HIGH SCHOOL | BLUE VALLEY DISTRICT CURRICULUM OVERVIEW

Chemistry

UNIT 1: Trends of the Periodic Table

ESSENTIAL QUESTIONS	BIG IDEAS
How are new elements made? Why is the periodic table shaped that way?	 Students understand changes in the nucleus result in new particles. Students understand that all matter is made of atoms of the elements on the periodic table. Students understand the periodic table is an organized representation of elements that can be used to predict atomic structure and properties.

GUIDING QUESTIONS

Content:

- What happens when an element undergoes a half-life?
- What are the types of radiation and radioactive decay?
- How do scientists count and measure atoms?
- How is energy related to the arrangement of electrons in an atom?
- How does the structure of an atom affect its mass and charge?
- How are the elements of the periodic table classified into categories?
- How do electron configurations of elements allow us to predict periodic table trends?

Process:

- How are nuclear process represented by a balanced equation?
- Why is the quantum model better at predicting where an electron lives than the shell model?
- What patterns do we see on the periodic table when putting elements in increasing atomic number?

Reflective:

- How does an atomic bomb work?
- What are the lasting impacts of an atomic bomb?
- Why do we wear a lead apron when we get an x-ray?
- If you were Mendeleev, how would you organize the elements?
- Think about each family of the periodic table, do you agree with the name? Why or why not?

UNIT 2: Bonding

ESSENTIAL QUESTIONS BIG IDEAS

How do atoms interact with each other?

• Students understand how atoms bond, and how the type of bonds give substances their chemical and physical properties.

GUIDING QUESTIONS

Content:

- How can an atom satisfy the octet rule?
- How can a Lewis dot structure be used to identify the shape of a molecule?
- What are the rules for writing formulas and naming compounds containing ionic and covalent bonds?
- What determines the polarity of a compound?
- How do you classify the polarity of a bond?
- How does the type of bonding (ionic, covalent, metallic) in a substance affect its chemical and physical properties?

Process:

- How do ionic, covalent, and metallic bonds determine the properties of a compound?
- What patterns in bonding determine the shape and polarity of a compound?
- What patterns do we see in naming compounds?

- How do the bonds in an item you can't live without relate to its importance?
- How do manufacturers choose the material they use for new products?
- How would our world be different if electrons were positively charged?
- Which is more important: metallic, ionic, or covalent bonds?

UNIT 3: Types of Interactions

ESSENTIAL QUESTIONS

BIG IDEAS

How do interactions between molecules explain the properties for a substance?

• Students understand that the type of interactions between particles determines physical and chemical properties.

GUIDING QUESTIONS

Content:

- How do attractive forces between molecules affect physical properties?
- How does the polarity of a molecule affect the types of intermolecular forces present?
- How is the solvation process different for molecular and ionic substances?
- How is the concentration of a solution measured?
- What are colligative properties and how are these properties useful in everyday life?

Process:

- How do solutions form?
- How can the physical and chemical properties of a substance be used to predict its intermolecular forces?

- How do pollutants affect our water supply?
- Could your cell phone work without intermolecular forces?
- Why is it better to drink milk than water when eating spicy food?
- What could we have done to make this unit more "Green" (environmentally friendly)? This could be a question for any unit and forces students to think about what we did and why.
- What evidence do we have that particles have interactions?

UNIT 4: Chemical Processes

ESSENTIAL QUESTIONS BIG IDEAS

How are chemical reactions involved in what we do and see?

• Students understand atoms can be rearranged to produce new substances while conserving energy and matter.

GUIDING QUESTIONS

Content:

- How are microscopic rearrangement of atoms observed on a macroscopic level?
- How can a chemical change be represented by a balanced chemical equation?
- How can the products of a chemical reaction be predicted based on the type of reaction?

Process:

- How can the pattern of reaction types predict the products of a chemical reaction?
- How does a balanced equation represent the conservation of matter?

Reflective:

• What chemical processes allow our body to function?

UNIT 5: Equilibrium and Rates

ESSENTIAL QUESTIONS BIG IDEAS

How are reactions affected by changes in the environment?

• Students understand that reaction rate and direction can be influenced by outside factors.

GUIDING QUESTIONS

Content:

- How do temperature, surface area, volume, concentration, and the addition of a catalyst influence reaction rates?
- How will a reaction shift based on changes in temperature, pressure, and concentration?
- How does adding a catalyst influence the activation energy?
- What is the difference between an endothermic and exothermic reaction?
- How does the potential energy change during a reaction?

Process:

- How do reaction rate principles and reaction mechanisms explain the changes in energy and concentration during a chemical reaction?
- What patterns exist between the concentration of products and reactants in an equilibrium reaction?
- How does a reaction at equilibrium demonstrate a reaction that is both stable and changing?
- How can the direction and speed of a reaction be manipulated?

- How is equilibrium an example of a self-sustaining process?
- Can we make a reversible reaction go to completion?

UNIT 6: Acid/Base

ESSENTIAL QUESTIONS	BIG IDEAS
---------------------	-----------

How do H⁺ ions impact many aspects of our life?

 Students understand the chemical relationship between hydrogen and hydroxide ions and their impact on properties of a solution.

GUIDING QUESTIONS

Content:

- How are pH, H⁺ concentration and OH⁻ concentration conceptually related?
- How are indicators used in acid and base chemistry?
- What mathematical information about the reactants and products can be obtained by using a balanced neutralization reaction through a titration process?
- How does the concentration and the pH change when an acid or base is diluted?
- How is the behavior of strong acids different than that of weak acids in aqueous solutions?

Process:

- How does the ion concentration change throughout a titration?
- Use physical and chemical properties to explain if a solution is acidic or basic?
- How do we apply patterns when writing formulas and naming common acids?

- Why is acid rain a problem?
- How can titrations be used in the real world?

UNIT 7: Chemical Quantities

ESSENTIAL QUESTIONS	BIG IDEAS
---------------------	-----------

How are quantities of reactants and products in a chemical reaction mathematically related?

• Students understand quantitative relationships exist in chemical reactions.

GUIDING QUESTIONS

Content:

- How are the amounts of substances consumed and produced in a chemical reaction calculated?
- How can experimental data be used to calculate percent yield?
- How can the limiting reactant be identified and used in stoichiometry problems?

Process:

- Why do stoichiometric calculations always begin with a balanced chemical equation?
- How can dimensional analysis and the mole ratio mathematically determine the amounts of reactant and products involved in a chemical reaction?
- How can data be used as evidence to support the choice of limiting and excess reactants?

- Could using too much fertilizer in the midwest be the reason that fish are dying in the ocean?
- How does the FDA determine how much poison is allowed to be in the food we eat?
- Why do chemists use the unit "mole"?
- How would a business use the concept of stoichiometric relationships/percent yield when creating a product?

UNIT 8: Gas Relationships

ESSENTIAL QUESTIONS BIG IDEAS

How do gas particles impact our lives?

• Students understand the behavior of gases on the microscopic and macroscopic levels.

GUIDING QUESTIONS

Content:

- How are the amounts of substances consumed and produced in a chemical reaction calculated?
- How can experimental data be used to calculate percent yield?
- How can the limiting reactant be identified and used in stoichiometry problems?

Process:

- Why do stoichiometric calculations always begin with a balanced chemical equation?
- How can dimensional analysis and the mole ratio mathematically determine the amounts of reactant and products involved in a chemical reaction?
- How can data be used as evidence to support the choice of limiting and excess reactants?

- Could using too much fertilizer in the midwest be the reason that fish are dying in the ocean?
- How does the FDA determine how much poison is allowed to be in the food we eat?
- Why do chemists use the unit "mole"?
- How would a business use the concept of stoichiometric relationships/percent yield when creating a product?

UNIT 9: Thermochemistry

ESSENTIAL QUESTIONS	BIG IDEAS
---------------------	-----------

How can energy changes between particles account for energy in the world?

• Students understand energy changes during nuclear, chemical and physical processes.

GUIDING QUESTIONS

Content:

- How do we determine energy exchange within physical processes?
- How do we determine energy exchange based on bonds involved in chemical processes?
- What are similarities and differences between Fission and Fusion?
- How is energy involved in a nuclear process?

Process:

- How can we use calorimetry to determine the amount of energy transferred in a process?
- How does a heating curve represent the changes of energy within a physical process?
- How do nuclear and chemical reactions represent the changes of energy within a process?

- Does the food you eat provide the right amount of energy for your day?
- How does natural gas provide heat for your home?
- Which would you rather live by a nuclear power plant or a wind turbine?
- Which is better: nuclear fusion or nuclear fission?